Lesson 21. Weak and Strong Duality

0 Warm up

Example 1. State the dual of the following linear program.

	maximize	$5x_1 + x_2 - $	$4x_{3}$			
	subject to	$x_1 + x_2 + x_3 + x_4 = 19$ $4x_2 + 8x_4 \le 55$ $x_1 + 6x_2 - x_3 \ge 7$		0	3.	
				S	32	
				В	33	
	x_1 free, $x_2 \ge 0, x_3 \ge 0, x_4 \le 0$					
		0	s s	B		
min	19 y, +	55 y 2	+ 7y3			
s.t.	yı		+ 73	= 5	٥	x,
	31	+ 4 72	+ 633	>	S	Xz
	31		- 73	2 - 4	5	×3
	y,	+ 872		<u> </u>	B	×4
	۹٬ ۴	ree, y2	≥0, s	y3 ≤ B	0	

1 Weak duality

- Let [max] and [min] be a primal-dual pair of LPs
 - [max] is the maximization LP
 - [min] is the minimization LP
 - $\circ~[\min]$ is the dual of [max], and [max] is the dual of [min]
- Let z^* be the optimal value of [max]
- In the previous lesson, we saw that
 - $\circ~$ Any feasible solution to [max] gives a lower bound on z^*
 - $\circ~$ Any feasible solution to [min] gives an upper bound on z^*
- Putting these observations together:

Weak duality theorem.

 $\left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to [max]} \end{array}\right) \leq \left(\begin{array}{c} \text{Objective function value} \\ \text{of any feasible solution to [min]} \end{array}\right)$

• The weak duality theorem has several interesting consequences

Corollary 1. If \mathbf{x}^* is a feasible solution to [max], \mathbf{y}^* is a feasible solution to [min], and

$$\begin{pmatrix} \text{Objective function value} \\ \text{of } \mathbf{x}^* \text{ in } [\text{max}] \end{pmatrix} = \begin{pmatrix} \text{Objective function value} \\ \text{of } \mathbf{y}^* \text{ in } [\text{min}] \end{pmatrix}$$

then (i) \mathbf{x}^* is an optimal solution to [max], and (ii) \mathbf{y}^* is an optimal solution to [min].

Proof. • Let's start with (i):

$$\begin{pmatrix} \text{Objective function value} \\ \text{of } \mathbf{x}^* \text{ in } [\text{max}] \end{pmatrix} = \begin{pmatrix} \text{Objective function value} \\ \text{of } \mathbf{y}^* \text{ in } [\text{min}] \end{pmatrix} \geq \begin{pmatrix} \text{Objective function value} \\ \text{of any feasible solution to } [\text{max}] \end{pmatrix}$$
weak duality

- Therefore \boldsymbol{x}^* must be an optimal solution to [max]
- (ii) can be argued similarly
- Corollary 2. (i) If [max] is unbounded, then [min] must be infeasible.(ii) If [min] is unbounded, then [max] must be infeasible.

Proof. • Let's start with (i)

• Proof by contradiction: suppose [min] is feasible, and let \mathbf{y}^* be a feasible solution to [min]

$$\begin{pmatrix} \text{Objective function value} \\ \text{of } \mathbf{y}^* \text{ in [min]} \end{pmatrix} \stackrel{\geq}{\stackrel{\frown}{\longrightarrow}} \begin{pmatrix} \text{Objective function value} \\ \text{of any feasible solution to [max]} \end{pmatrix}$$

$$\begin{array}{c} \text{weak duality} \end{array}$$

- Therefore [max] cannot be unbounded, which is a contradiction
- (ii) can be argued similarly
- Note that primal infeasibility does not imply dual unboundedness
- It is possible that both primal and dual LPs are infeasible
 - See Rader p. 328 for an example

2 Strong duality

Strong duality theorem. Let [P] denote a primal LP and [D] its dual.

- a. If [P] has a finite optimal solution, then [D] also has a finite optimal solution with the same objective function value.
- b. If [P] and [D] both have feasible solutions, then
 - [P] has a finite optimal solution **x***;
 - [D] has a finite optimal solution **y***;
 - the optimal values of [P] and [D] are equal.

NAN ANT

• This is an AMAZING fact

- Useful from theoretical, algorithmic, and modeling perspectives
- Even the simplex method implicitly uses duality: the reduced costs are essentially solutions to the dual that are infeasible until the last step